Методические материалы для выполнения расчетно-графической работы по математической статистике

Задание на работу

- 1. Генерировать две повторные выборки с нормальным распределением.
- 2. Для первой выборки найти выборочное среднее и дисперсию, экстремальные значения, размах, выборочную медиану.
- 3. Построить для первой выборки график эмпирической функции распределения и гистограмму. Сгладить гистограмму с помощью нормальной плотности, оценив предварительно параметры.
- 5. Построить оценки параметров для нормального распределения по МНП.
- 6. Построить доверительные интервалы для среднего и дисперсии.
- 7. По критерию χ^2 проверить согласие эмпирических данных с нормальным распределением.
- 8. Две выборки сгруппировать и проверить однородность по критерию χ^2 .
- 9. Для первой выборки из нормального распределения проверить гипотезы о параметрах нормального распределения.
- 10. Для двух независимых выборок из нормального распределения проверить гипотезу о равенстве средних (при условии равенства дисперсий).

Для вычисления критических констант необходимо использовать либо таблицы распределений вероятностей, либо ППП по статистике.

Работа может выполняться либо вручную, либо с помощью ППП по статистике. Но в любом случае в отчете необходимо подробно описать все этапы вычислений и выписать все формулы.

Выполнение работы является допуском к сдаче экзамена по

математической статистике.

Ниже приводятся теоретические результаты, необходимые для выполнения работы.

Гистограмма

Гистограмма строится по выборке $x=(x_1,\ldots,x_N)$ для наглядного представления экспериментальных данных. Она служит оценкой плотности распределения изучаемой количественной характеристики. Вид графика гистограммы позволяет выдвинуть гипотезу о том, к какому классу принадлежит истинное распределение. Обычно, для сравнения на одном рисунке изображают и график гистограммы и график "сглаженной" плотности распределения из выбранного семейства. Для построения последнего сначала оценивают параметры, а затем вычисляют значения плотности (аналитически и по таблицам) в некоторых точках y_k . После этого приближенно строят график плотности.

Для построения гистограммы выбирают некоторый интервал [a,b], содержащий все выборочные точки x_k . Затем образуют некоторое разбиение этого отрезка:

$$a = a_0 < a_1 < \dots, a_k < a_{k+1} < \dots < a_{r-1} < a_r = b$$
.

Это разбиение строят таким образом, чтобы в каждый подотрезок попадало не менее 5 точек. **Гистограммой** называется функция, определяемая по правилу

$$\rho_N(y) = h_k = \frac{N_k}{N \cdot \Delta_k}, \ a_k < y \le a_{k+1}, \ k = \overline{0, r-1},$$

где N_k – число элементов выборки, попавших в интервал $(a_k, a_{k+1}]$, $\Delta_k = (a_{k+1} - a_k)$.

Для построения "сглаженной плотности нужно оценить параметры и вычислить ее значения в некоторых точках y_k . Обычно, в качестве этих точек выбирают середины интервалов разбиения. Например, для семейства нормальных плотностей с параметрами (a, σ^2) оценки строятся по правилу

$$\hat{a} = \bar{x}, \ \hat{\sigma^2} = S^2, q$$

а значения "сглаженной плотности берут равными

$$\varphi\left(\frac{y_k - \bar{x}}{S}\right)$$
,

где $y_k = (a_k + a_{k+1})/2, \, \varphi(y)$ – стандартная нормальная плотность.

Доверительные интервалы

С. в. ξ имеет нормальное распределение с параметрами (a, σ^2) . $X = (X_1, \dots, X_N)$ -повторная выборка.

1. $\theta = a$, σ^2 -известно.

Доверительный интервал уровня γ для параметра a строится по правилу:

$$\overline{X} - \frac{C_{\gamma}\sigma}{\sqrt{N}} < a < \overline{X} + \frac{C_{\gamma}\sigma}{\sqrt{N}}$$
,

где константа C_{γ} определеляется по таблицам нормального распределения из соотношения

$$2\Phi_0(C_\gamma) = \gamma \ .$$

2. $\theta = a$, σ^2 -неизвестно.

Доверительный интервал уровня γ для параметра a строится по правилу:

$$\overline{X} - \frac{t_{N-1}(\gamma)S_1}{\sqrt{N}} < a < \overline{X} - \frac{t_{N-1}(\gamma)S_1}{\sqrt{N}}$$

где константа $t_{n-1}(\gamma)$ определеляется по таблицам распределения Стьюдента с N-1 степенью свободы из соотношения

$$P(|t_{N-1}| < t_{n-1}(\gamma)) = \gamma$$
.

3. $\theta = \sigma^2$.

Доверительный интервал уровня γ для параметра σ^2 строится по правилу:

$$\frac{(N-1)S_1^2}{C_2(\gamma)} < \sigma^2 < \frac{(N-1)S_1^2}{C_1(\gamma)} ,$$

где константы $C_1(\gamma)$ и $C_2(\gamma)$ находим из таблиц χ^2 -распределения с N-1 степенью свободы с помощью соотношений:

$$P(\chi^2 < C_1(\gamma)) = \frac{1-\gamma}{2}, \ P(\chi^2 > C_2(\gamma)) = \frac{1-\gamma}{2}.$$

χ^2 -критерий Пирсона

1. Критерий согласия.

С. в. ξ имеет незвестную ф. р. F(y). Мы хотим проверить гипотезу

$$H_0: F(y) = F_0(y)$$
,

где $F_0(y)$ -некоторая фиксированная ф. р.

Пусть $X = (X_1, \dots, X_N)$ есть повторная выборка. Разобьем множество значений с. в. ξ на несколько интервалов:

$$-\infty = a_0 < a_1 < \dots < a_k < a_{k+1} < \dots < a_r < a_{r+1} = \infty . \tag{1}$$

Всего мы имеем r+1 интервал. Пусть n_k равно числу элементов выборки, попавших в интервал $[a_k, a_{k+1})$, а

$$p_k = F_0(a_{k+1}) - F_0(a_k)$$

есть вероятность попадания в этот интервал, если верна H_0 . При верной гипотезе H_0 с.в.

$$\chi_N^2 = \sum_{k=0}^r \frac{(n_k - Np_k)^2}{Np_k}$$

имеет асимптотически при $N \to \infty$ χ^2 -распределение с (r+1)-1=r степенями свободы. Для заданного α по таблицам χ^2 -распределения найдем константу $\chi^2_r(\alpha)$ из соотношения

$$P(\chi^2 > \chi_r^2(\alpha)) = \alpha$$
.

Если реально полученное $\chi_N^2 > \chi_r^2(\alpha)$, то H_0 -неверна. В противном случае говорят, что она не противоречит экспериментальным данным.

В случае сложной гипотезы

$$H_0: F(y) = F_0(y, \theta_1, \dots, \theta_m)$$
,

где $F_0(y, \theta_1, \dots, \theta_m)$ -известная ф. р., а $\theta = (\theta_1, \dots, \theta_m)$ -неизвестные параметры, мы вначале оцениваем параметры (например, по МНП), а затем вычисляем

$$p_k^* = F_0(a_{k+1}, \theta^*) - F_0(a_k, \theta^*)$$
.

Далее все делаем также как в случае простой гипотезы, но χ_N^2 имеет асимптотически χ^2 -распределение с (r+1)-1-m=r-m степенями свободы.

2. Критерий однородности.

Пусть мы имеем две независимые выборки $X=(X_1,\ldots,X_{N_1})$ и $Y=(Y_1,\ldots,Y_{N_2})$ из генеральных совокопностей с ф. р. $F_1(z)$ и $F_2(z)$ соответственно. Мы хотим проверить гипотезу

$$H_0: F_1(z) = F_2(z)$$
.

Для этого вновь образуем разбиение (1) множества значений случайных величин. Пусть n_{k1} есть число элементов выборки X, попавших в интервал $[a_k, a_{k+1})$, а n_{k2} аналогичные числа для второй выборки.

Если гипотеза H_0 верна, то с. в.

$$\chi_N^2 = \sum_{k=0}^r \sum_{j=1}^2 \frac{(n_{kj} - n_k \frac{N_j}{N})^2}{n_k \frac{N_j}{N}} ,$$

где $n_k = n_{k1} + n_{k2}$, имеет асимптотически при $N_1, N_2 \to \infty$ χ^2 -распределение с r степенями свободы.

Далее процедура проверки гипотезы об однородности строится также как в случае критерия согласия.

Проверка гипотез

Пусть с. в. ξ имеет нормальное распределение с параметрами $(a, \sigma^2), X = (X_1, \dots, X_{N_1})$ -повторная выборка.

1. Проверяется гипотеза

$$H_0: a = a_0$$

против альтернативы

$$H_1: a \neq a_0$$
.

Для этого используют статистику

$$T = \frac{\overline{X} - a_0}{S_1} \sqrt{N} \ ,$$

которая при гипотезе H_0 имеет распределение Стьюдента с N-1 степенью свободы. Для заданного α по таблицам находим константу $t_{n-1}(\alpha)$ из соотношения

$$P(|T| > t_{n-1}(\alpha)) = \alpha .$$

Если реально полученное $|T| > t_{n-1}(\alpha)$, то отвергаем H_0 . В противном случае она не противоречит экспериментальным данным.

2. Проверяется гипотеза

$$H_0: \ \sigma^2 = \sigma_0^2$$

против альтернативы

$$H_0: \sigma^2 \neq \sigma_0^2$$

Для этого используют статистику

$$\chi^2 = (N-1)S_1^2/\sigma_0^2$$
,

которая при гипотезе H_0 имеет χ^2 -распределение с N-1 степенью свободы. Для заданного α по таблицам находим константы $C_1(\alpha)$ и $C_2(\alpha)$ из соотношений

$$P(\chi^2 < C_1(\alpha)) = \alpha/2$$
, $P(\chi^2 > C_2(\alpha)) = \alpha/2$.

Если реально полученное χ^2 таково, что

$$\chi^2 < C_1(\alpha)$$
 или $\chi^2 > C_2(\alpha)$.

то отвергаем H_0 . В противном случае она не противоречит экспериментальным данным.

3. Пусть мы имеем две независимые повторные выборки $X = (X_1, \ldots, X_{N_1})$ и $Y = (Y_1, \ldots, Y_{N_2})$ из генеральных совокопностей с нормальными распределениями, параметры которых есть (a_1, σ^2) и (a_2, σ^2) .

Мы хотим проверить гипотезу

$$H_0: a_1 = a_2$$

против альтернативы

$$H_1: a_1 \neq a_2$$
.

Для этого используют статистику

$$T = \frac{\sum_{i=1}^{N_1} X_i - \sum_{i=1}^{N_1} Y_i}{\sqrt{(N_1 S_1^2 + N_2 S_2^2)/(N - 2)}} \frac{1}{\sqrt{N}},$$

где $N=N_1+N_2,\ N_1S_1^2=\sum\limits_{i=1}^{N_1}(X_i-\overline{X})^2\ N_2S_2^2=\sum\limits_{i=1}^{N_2}(Y_i-\overline{y})^2,$ которая при гипотезе H_0 имеет распределение Стьюдента с N-2 степенями свободы.

Далее процедура проверки гипотезы H_0 строится также как и в задаче 1.